
Logutils Documentation
Release 0.3.6

Vinay Sajip

Nov 16, 2019

Contents

1 Configuring Libraries 3

2 Working with queues 5

3 Working with Redis queues 7

4 Unit testing 9

5 Dictionary-based Configuration 13

6 Working with Logger adapters 15

7 Working with web sites 17

8 Colorizing Console Streams 19

9 Indices and tables 21

Python Module Index 23

Index 25

i

ii

Logutils Documentation, Release 0.3.6

The logutils package provides a set of handlers for the Python standard library’s logging package.

Some of these handlers are out-of-scope for the standard library, and so they are packaged here. Others are updated
versions which have appeared in recent Python releases, but are usable with older versions of Python, and so are
packaged here.

For recent changes, see whats-new.

There are a number of subcomponents to this package, relating to particular tasks you may want to perform:

Contents 1

Logutils Documentation, Release 0.3.6

2 Contents

CHAPTER 1

Configuring Libraries

When developing libraries, you’ll probably need to use the NullHandler class.

N.B. This is part of the standard library since Python 2.7 / 3.1, so the version here is for use with earlier Python
versions.

Typical usage:

import logging
try:

from logging import NullHandler
except ImportError:

from logutils import NullHandler

use this in all your library's subpackages/submodules
logger = logging.getLogger(__name__)

use this just in your library's top-level package
logger.addHandler(NullHandler())

class logutils.NullHandler(level=0)
This handler does nothing. It’s intended to be used to avoid the “No handlers could be found for logger XXX”
one-off warning. This is important for library code, which may contain code to log events. If a user of the library
does not configure logging, the one-off warning might be produced; to avoid this, the library developer simply
needs to instantiate a NullHandler and add it to the top-level logger of the library module or package.

createLock()
Since this handler does nothing, it has no underlying I/O to protect against multi-threaded access, so this
method returns None.

emit(record)
Emit a record. This does nothing and shouldn’t be called during normal processing, unless you redefine
handle().

handle(record)
Handle a record. Does nothing in this class, but in other handlers it typically filters and then emits the
record in a thread-safe way.

3

Logutils Documentation, Release 0.3.6

4 Chapter 1. Configuring Libraries

CHAPTER 2

Working with queues

This module contains classes which help you work with queues. A typical application is when you want to log from
performance-critical threads, but where the handlers you want to use are slow (for example, SMTPHandler). In
that case, you can create a queue, pass it to a QueueHandler instance and use that instance with your loggers.
Elsewhere, you can instantiate a QueueListener with the same queue and some slow handlers, and call start()
on it. This will start monitoring the queue on a separate thread and call all the configured handlers on that thread, so
that your logging thread is not held up by the slow handlers.

Note that as well as in-process queues, you can use these classes with queues from the multiprocessing module.

N.B. This is part of the standard library since Python 3.2, so the version here is for use with earlier Python versions.

class logutils.queue.QueueHandler(queue)
This handler sends events to a queue. Typically, it would be used together with a multiprocessing Queue to
centralise logging to file in one process (in a multi-process application), so as to avoid file write contention
between processes.

Parameters queue – The queue to send LogRecords to.

emit(record)
Emit a record.

Writes the LogRecord to the queue, preparing it for pickling first.

Parameters record – The record to emit.

enqueue(record)
Enqueue a record.

The base implementation uses put_nowait(). You may want to override this method if you want to
use blocking, timeouts or custom queue implementations.

Parameters record – The record to enqueue.

prepare(record)
Prepares a record for queuing. The object returned by this method is enqueued.

The base implementation formats the record to merge the message and arguments, and removes unpick-
leable items from the record in-place.

5

https://docs.python.org/dev/library/logging.handlers.html#logging.handlers.SMTPHandler
https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/dev/library/queue.html#queue.Queue.put_nowait

Logutils Documentation, Release 0.3.6

You might want to override this method if you want to convert the record to a dict or JSON string, or send
a modified copy of the record while leaving the original intact.

Parameters record – The record to prepare.

class logutils.queue.QueueListener(queue, *handlers, **kwargs)
This class implements an internal threaded listener which watches for LogRecords being added to a queue,
removes them and passes them to a list of handlers for processing.

Parameters

• record – The queue to listen to.

• handlers – The handlers to invoke on everything received from the queue.

dequeue(block)
Dequeue a record and return it, optionally blocking.

The base implementation uses get(). You may want to override this method if you want to use timeouts
or work with custom queue implementations.

Parameters block – Whether to block if the queue is empty. If False and the queue is empty,
an Empty exception will be thrown.

enqueue_sentinel()
Writes a sentinel to the queue to tell the listener to quit. This implementation uses put_nowait(). You
may want to override this method if you want to use timeouts or work with custom queue implementations.

handle(record)
Handle a record.

This just loops through the handlers offering them the record to handle.

Parameters record – The record to handle.

prepare(record)
Prepare a record for handling.

This method just returns the passed-in record. You may want to override this method if you need to do any
custom marshalling or manipulation of the record before passing it to the handlers.

Parameters record – The record to prepare.

start()
Start the listener.

This starts up a background thread to monitor the queue for LogRecords to process.

stop()
Stop the listener.

This asks the thread to terminate, and then waits for it to do so. Note that if you don’t call this before your
application exits, there may be some records still left on the queue, which won’t be processed.

6 Chapter 2. Working with queues

https://docs.python.org/dev/library/queue.html#queue.Queue.get
https://docs.python.org/dev/library/queue.html#queue.Empty

CHAPTER 3

Working with Redis queues

QueueHandler and QueueListener classes are provided to facilitate interfacing with Redis.

class logutils.redis.RedisQueueHandler(key=’python.logging’, redis=None, limit=0)
A QueueHandler implementation which pushes pickled records to a Redis queue using a specified key.

Parameters

• key – The key to use for the queue. Defaults to “python.logging”.

• redis – If specified, this instance is used to communicate with a Redis instance.

• limit – If specified, the queue is restricted to have only this many elements.

enqueue(record)
Enqueue a record.

The base implementation uses put_nowait(). You may want to override this method if you want to
use blocking, timeouts or custom queue implementations.

Parameters record – The record to enqueue.

class logutils.redis.RedisQueueListener(*handlers, **kwargs)
A QueueListener implementation which fetches pickled records from a Redis queue using a specified key.

Parameters

• key – The key to use for the queue. Defaults to “python.logging”.

• redis – If specified, this instance is used to communicate with a Redis instance.

dequeue(block)
Dequeue and return a record.

enqueue_sentinel()
Writes a sentinel to the queue to tell the listener to quit. This implementation uses put_nowait(). You
may want to override this method if you want to use timeouts or work with custom queue implementations.

7

https://docs.python.org/dev/library/queue.html#queue.Queue.put_nowait

Logutils Documentation, Release 0.3.6

8 Chapter 3. Working with Redis queues

CHAPTER 4

Unit testing

When developing unit tests, you may find the TestHandler and Matcher classes useful.

Typical usage:

import logging
from logutils.testing import TestHandler, Matcher
import unittest

class LoggingTest(unittest.TestCase):
def setUp(self):

self.handler = h = TestHandler(Matcher())
self.logger = l = logging.getLogger()
l.addHandler(h)

def tearDown(self):
self.logger.removeHandler(self.handler)
self.handler.close()

def test_simple(self):
"Simple test of logging test harness."
Just as a demo, let's log some messages.
Only one should show up in the log.
self.logger.debug("This won't show up.")
self.logger.info("Neither will this.")
self.logger.warning("But this will.")
h = self.handler
self.assertTrue(h.matches(levelno=logging.WARNING))
self.assertFalse(h.matches(levelno=logging.DEBUG))
self.assertFalse(h.matches(levelno=logging.INFO))

def test_partial(self):
"Test of partial matching in logging test harness."
Just as a demo, let's log some messages.
Only one should show up in the log.
self.logger.debug("This won't show up.")

(continues on next page)

9

Logutils Documentation, Release 0.3.6

(continued from previous page)

self.logger.info("Neither will this.")
self.logger.warning("But this will.")
h = self.handler
self.assertTrue(h.matches(msg="ut th")) # from "But this will"
self.assertTrue(h.matches(message="ut th")) # from "But this will"
self.assertFalse(h.matches(message="either"))
self.assertFalse(h.matches(message="won't"))

def test_multiple(self):
"Test of matching multiple values in logging test harness."
Just as a demo, let's log some messages.
Only one should show up in the log.
self.logger.debug("This won't show up.")
self.logger.info("Neither will this.")
self.logger.warning("But this will.")
self.logger.error("And so will this.")
h = self.handler
self.assertTrue(h.matches(levelno=logging.WARNING,

message='ut thi'))
self.assertTrue(h.matches(levelno=logging.ERROR,

message='nd so wi'))
self.assertFalse(h.matches(levelno=logging.INFO))

class logutils.testing.Matcher
This utility class matches a stored dictionary of logging.LogRecord attributes with keyword arguments
passed to its matches() method.

match_value(k, dv, v)
Try to match a single stored value (dv) with a supplied value (v).

Return True if found, else False.

Parameters

• k – The key value (LogRecord attribute name).

• dv – The stored value to match against.

• v – The value to compare with the stored value.

matches(d, **kwargs)
Try to match a single dict with the supplied arguments.

Keys whose values are strings and which are in self._partial_matches will be checked for partial (i.e.
substring) matches. You can extend this scheme to (for example) do regular expression matching, etc.

Return True if found, else False.

Parameters kwargs – A set of keyword arguments whose names are LogRecord attributes and
whose values are what you want to match in a stored LogRecord.

class logutils.testing.TestHandler(matcher)
This handler collects records in a buffer for later inspection by your unit test code.

Parameters matcher – The Matcher instance to use for matching.

count
The number of records in the buffer.

emit(record)
Saves the __dict__ of the record in the buffer attribute, and the formatted records in the formatted attribute.

10 Chapter 4. Unit testing

https://docs.python.org/dev/library/logging.html#logging.LogRecord

Logutils Documentation, Release 0.3.6

Parameters record – The record to emit.

flush()
Clears out the buffer and formatted attributes.

matchall(kwarglist)
Accept a list of keyword argument values and ensure that the handler’s buffer of stored records matches
the list one-for-one.

Return True if exactly matched, else False.

Parameters kwarglist – A list of keyword-argument dictionaries, each of which will be
passed to matches() with the corresponding record from the buffer.

matches(**kwargs)
Look for a saved dict whose keys/values match the supplied arguments.

Return True if found, else False.

Parameters kwargs – A set of keyword arguments whose names are LogRecord attributes and
whose values are what you want to match in a stored LogRecord.

shouldFlush()
Should the buffer be flushed?

This returns False - you’ll need to flush manually, usually after your unit test code checks the buffer
contents against your expectations.

11

Logutils Documentation, Release 0.3.6

12 Chapter 4. Unit testing

CHAPTER 5

Dictionary-based Configuration

This module implements dictionary-based configuration according to PEP 391.

N.B. This is part of the standard library since Python 2.7 / 3.2, so the version here is for use with earlier Python
versions.

class logutils.dictconfig.DictConfigurator(config)
Configure logging using a dictionary-like object to describe the configuration.

configure()
Do the configuration.

logutils.dictconfig.dictConfig(config)
Configure logging using a dictionary.

13

Logutils Documentation, Release 0.3.6

14 Chapter 5. Dictionary-based Configuration

CHAPTER 6

Working with Logger adapters

N.B. This is part of the standard library since Python 2.6 / 3.1, so the version here is for use with earlier Python
versions.

The class was enhanced for Python 3.2, so you may wish to use this version with earlier Python versions.

However, note that the LoggerAdapter class will not work with Python 2.4 or earlier, as it uses the extra keyword
argument which was added in later Python versions.

class logutils.adapter.LoggerAdapter(logger, extra)
An adapter for loggers which makes it easier to specify contextual information in logging output.

critical(msg, *args, **kwargs)
Delegate a critical call to the underlying logger.

debug(msg, *args, **kwargs)
Delegate a debug call to the underlying logger.

error(msg, *args, **kwargs)
Delegate an error call to the underlying logger.

exception(msg, *args, **kwargs)
Delegate an exception call to the underlying logger.

getEffectiveLevel()
Get the effective level for the underlying logger.

hasHandlers()
See if the underlying logger has any handlers.

info(msg, *args, **kwargs)
Delegate an info call to the underlying logger.

isEnabledFor(level)
Is this logger enabled for level ‘level’?

log(level, msg, *args, **kwargs)
Delegate a log call to the underlying logger, after adding contextual information from this adapter instance.

15

Logutils Documentation, Release 0.3.6

process(msg, kwargs)
Process the logging message and keyword arguments passed in to a logging call to insert contextual infor-
mation. You can either manipulate the message itself, the keyword args or both. Return the message and
kwargs modified (or not) to suit your needs.

Normally, you’ll only need to override this one method in a LoggerAdapter subclass for your specific
needs.

setLevel(level)
Set the specified level on the underlying logger.

warn(msg, *args, **kwargs)
Delegate a warning call to the underlying logger.

warning(msg, *args, **kwargs)
Delegate a warning call to the underlying logger.

16 Chapter 6. Working with Logger adapters

CHAPTER 7

Working with web sites

N.B. The HTTPHandler class has been present in the logging package since the first release, but was enhanced
for Python 3.2 to add options for secure connections and user credentials. You may wish to use this version with earlier
Python releases.

class logutils.http.HTTPHandler(host, url, method=’GET’, secure=False, credentials=None)
A class which sends records to a Web server, using either GET or POST semantics.

Parameters

• host – The Web server to connect to.

• url – The URL to use for the connection.

• method – The HTTP method to use. GET and POST are supported.

• secure – set to True if HTTPS is to be used.

• credentials – Set to a username/password tuple if desired. If set, a Basic authentication
header is sent. WARNING: if using credentials, make sure secure is True to avoid sending
usernames and passwords in cleartext over the wire.

emit(record)
Emit a record.

Send the record to the Web server as a percent-encoded dictionary

Parameters record – The record to be emitted.

mapLogRecord(record)
Default implementation of mapping the log record into a dict that is sent as the CGI data. Overwrite in
your class. Contributed by Franz Glasner.

Parameters record – The record to be mapped.

17

https://docs.python.org/dev/library/logging.html#module-logging

Logutils Documentation, Release 0.3.6

18 Chapter 7. Working with web sites

CHAPTER 8

Colorizing Console Streams

ColorizingStreamHandler is a handler which allows colorizing of console streams, described here in more
detail.

class logutils.colorize.ColorizingStreamHandler(stream=None)
A stream handler which supports colorizing of console streams under Windows, Linux and Mac OS X.

Parameters strm – The stream to colorize - typically sys.stdout or sys.stderr.

colorize(message, record)
Colorize a message for a logging event.

This implementation uses the level_map class attribute to map the LogRecord’s level to a
colour/intensity setting, which is then applied to the whole message.

Parameters

• message – The message to colorize.

• record – The LogRecord for the message.

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

format(record)
Formats a record for output.

This implementation colorizes the message line, but leaves any traceback unolorized.

is_tty
Returns true if the handler’s stream is a terminal.

level_map = {10: (None, 'blue', False), 20: (None, 'black', False), 30: (None, 'yellow', False), 40: (None, 'red', False), 50: ('red', 'white', True)}
Maps levels to colour/intensity settings.

19

http://plumberjack.blogspot.com/2010/12/colorizing-logging-output-in-terminals.html

Logutils Documentation, Release 0.3.6

output_colorized(message)
Output a colorized message.

On Linux and Mac OS X, this method just writes the already-colorized message to the stream, since on
these platforms console streams accept ANSI escape sequences for colorization. On Windows, this handler
implements a subset of ANSI escape sequence handling by parsing the message, extracting the sequences
and making Win32 API calls to colorize the output.

Parameters message – The message to colorize and output.

20 Chapter 8. Colorizing Console Streams

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

21

Logutils Documentation, Release 0.3.6

22 Chapter 9. Indices and tables

Python Module Index

l
logutils, ??
logutils.adapter, 15
logutils.colorize, 19
logutils.dictconfig, 13
logutils.http, 17
logutils.queue, 5
logutils.testing, 10

23

Logutils Documentation, Release 0.3.6

24 Python Module Index

Index

C
colorize() (logutils.colorize.ColorizingStreamHandler

method), 19
ColorizingStreamHandler (class in

logutils.colorize), 19
configure() (logutils.dictconfig.DictConfigurator

method), 13
count (logutils.testing.TestHandler attribute), 10
createLock() (logutils.NullHandler method), 3
critical() (logutils.adapter.LoggerAdapter method),

15

D
debug() (logutils.adapter.LoggerAdapter method), 15
dequeue() (logutils.queue.QueueListener method), 6
dequeue() (logutils.redis.RedisQueueListener

method), 7
dictConfig() (in module logutils.dictconfig), 13
DictConfigurator (class in logutils.dictconfig), 13

E
emit() (logutils.colorize.ColorizingStreamHandler

method), 19
emit() (logutils.http.HTTPHandler method), 17
emit() (logutils.NullHandler method), 3
emit() (logutils.queue.QueueHandler method), 5
emit() (logutils.testing.TestHandler method), 10
enqueue() (logutils.queue.QueueHandler method), 5
enqueue() (logutils.redis.RedisQueueHandler

method), 7
enqueue_sentinel()

(logutils.queue.QueueListener method), 6
enqueue_sentinel()

(logutils.redis.RedisQueueListener method), 7
error() (logutils.adapter.LoggerAdapter method), 15
exception() (logutils.adapter.LoggerAdapter

method), 15

F
flush() (logutils.testing.TestHandler method), 11

format() (logutils.colorize.ColorizingStreamHandler
method), 19

G
getEffectiveLevel()

(logutils.adapter.LoggerAdapter method),
15

H
handle() (logutils.NullHandler method), 3
handle() (logutils.queue.QueueListener method), 6
hasHandlers() (logutils.adapter.LoggerAdapter

method), 15
HTTPHandler (class in logutils.http), 17

I
info() (logutils.adapter.LoggerAdapter method), 15
is_tty (logutils.colorize.ColorizingStreamHandler at-

tribute), 19
isEnabledFor() (logutils.adapter.LoggerAdapter

method), 15

L
level_map (logutils.colorize.ColorizingStreamHandler

attribute), 19
log() (logutils.adapter.LoggerAdapter method), 15
LoggerAdapter (class in logutils.adapter), 15
logutils (module), 1
logutils.adapter (module), 15
logutils.colorize (module), 19
logutils.dictconfig (module), 13
logutils.http (module), 17
logutils.queue (module), 5
logutils.testing (module), 10

M
mapLogRecord() (logutils.http.HTTPHandler

method), 17
match_value() (logutils.testing.Matcher method), 10

25

Logutils Documentation, Release 0.3.6

matchall() (logutils.testing.TestHandler method), 11
Matcher (class in logutils.testing), 10
matches() (logutils.testing.Matcher method), 10
matches() (logutils.testing.TestHandler method), 11

N
NullHandler (class in logutils), 3

O
output_colorized()

(logutils.colorize.ColorizingStreamHandler
method), 19

P
prepare() (logutils.queue.QueueHandler method), 5
prepare() (logutils.queue.QueueListener method), 6
process() (logutils.adapter.LoggerAdapter method),

15

Q
QueueHandler (class in logutils.queue), 5
QueueListener (class in logutils.queue), 6

R
RedisQueueHandler (class in logutils.redis), 7
RedisQueueListener (class in logutils.redis), 7

S
setLevel() (logutils.adapter.LoggerAdapter method),

16
shouldFlush() (logutils.testing.TestHandler

method), 11
start() (logutils.queue.QueueListener method), 6
stop() (logutils.queue.QueueListener method), 6

T
TestHandler (class in logutils.testing), 10

W
warn() (logutils.adapter.LoggerAdapter method), 16
warning() (logutils.adapter.LoggerAdapter method),

16

26 Index

	Configuring Libraries
	Working with queues
	Working with Redis queues
	Unit testing
	Dictionary-based Configuration
	Working with Logger adapters
	Working with web sites
	Colorizing Console Streams
	Indices and tables
	Python Module Index
	Index

